56 research outputs found

    Depth and Shape Estimation from Focus in Scanning Electron Microscope for Micromanipulation.

    No full text
    International audienceInter-object depth estimation is always a major concern for micromanipulation using scanning electron microscope (SEM). So far, various methods have been proposed for estimating this depth based on stereoscopic imaging. Most of them require external hardware unit or manual interaction during the process. In this paper, using the image focus information, different methods are presented for estimating the inter-object depth for micromanipulation and the local pixel point depth for 3D shape reconstruction. In both cases, the normalized variance has been used as the sharpness criteria. For interobject depth estimation, a visual servoing-based autofocusing method has been used to maximize the sharpness in object region windows. For Shape reconstruction, a stack of images are acquired by varying the working distance. These images are processed to find the maximum sharpness of each pixel and consequently reconstructing the surface. Developments are validated in a robotic handling scenario where the scene contains a microgripper and silicon microstructures

    Fast Image Drift Compensation in Scanning Electron Microscope using Image Registration.

    No full text
    International audienceScanning Electron Microscope (SEM) image acquisition is mostly affected by the time varying motion of pixel positions in the consecutive images, a phenomenon called drift. In order to perform accurate measurements using SEM, it is necessary to compensate this drift in advance. Most of the existing drift compensation methods were developed using the image correlation technique. In this paper, we present an image registration-based drift compensation method, where the correction on the distorted image is performed by computing the homography, using the keypoint correspondences between the images. Four keypoint detection algorithms have been used for this work. The obtained experimental results demonstrate the method's performance and efficiency in comparison with the correlation technique

    Scanning electron microscope image signal-to-noise ratio monitoring for micro-nanomanipulation.

    No full text
    International audienceAs an imaging system, scanning electron microscope (SEM) performs an important role in autonomous micro-nanomanipulation applications. When it comes to the sub micrometer range and at high scanning speeds, the images produced by the SEM are noisy and need to be evaluated or corrected beforehand. In this article, the quality of images produced by a tungsten gun SEM has been evaluated by quantifying the level of image signal-to-noise ratio (SNR). In order to determine the SNR, an efficient and online monitoring method is developed based on the nonlinear filtering using a single image. Using this method, the quality of images produced by a tungsten gun SEM is monitored at different experimental conditions. The derived results demonstrate the developed method's efficiency in SNR quantification and illustrate the imaging quality evolution in SEM

    Performance Evaluation of Scanning Electron Microscopes using Signal-to-Noise Ratio.

    No full text
    International audienceScanning Electron Microscope is becoming a vital imaging tool in desktop laboratories because of its high imaging capability. Through this work we evaluate the performance of two different SEMs consisting of a tungsten gun and a field effect gun, with respect to time and magnification by estimating their image signalto- noise ratio. SNR is mainly applied to quantify the level of image noise over changes in the acquisition time and magnification rates. Majority of the existing methods to estimate this quantity are based on crosscorrelation technique and requires two images of the same specimen area. In this paper we propose a simple and efficient technique to compute signal-to-noise ratio using median filters. Unlike other techniques the proposed method uses only a single image and can be used in real time applications. The derived results show the effectiveness of the developed algorithm

    Image detection in real time based on fuzzy fractal theory.

    No full text
    International audienceReal time image detection is still a challenge in research. Several methods have been used, but all can be divide in two approaches: the first is based on image field estimation in this case the quality of image is depending on the estimation method. The second is based on electrons collection, the particularity of this approach is that more the collection time is longer, better will be the quality of image. In both of these approaches, the global image should be obtained by assembling the mosaic local image or the visual index of the different point of the image. In this paper we introduce and Hybrid Fractal Fuzzy theory to track image in real time. The error is minimized using RANSAC (Random Sample Consensus) algorithm, by computing the homograph “pixel” union of image. In practice for mobile image a loop can be realize to focus the image in real time, so, we can have and efficient view of the global image in real time, which confer to the propose approach his efficient flexibility

    Visual servoing in medical robotics.

    No full text
    International audienceThe paper achieves a review of visual servoing approaches and their use in medical robotics

    Visual Servoing Schemes for Automatic Nanopositioning Under Scanning Electron Microscope.

    No full text
    International audienceThis paper presents two visual servoing approaches for nanopositioning in a scanning electron microscope (SEM). The first approach uses the total pixel intensities of an image as visual measurements for designing the control law. The positioning error and the platform control are directly linked with the intensity variations. The second approach is a frequency domain method that uses Fourier transform to compute the relative motion between images. In this case, the control law is designed to minimize the error i.e. the 2D motion between current and desired images by controlling the positioning platform movement. Both methods are validated at different experimental conditions for a task of positioning silicon microparts using a piezo-positioning platform. The obtained results demonstrate the efficiency and robustness of the developed methods

    Toward the vision based supervision of microfactories through images mosaicing.

    No full text
    International audienceThe microfactory paradigm means the miniaturisation of manufacturing systems according to the miniaturisation of products. Some benefits are the saving of material, energy and place. A vision based solution to the problem of supervision of microfactories is proposed. It consists in synthetising a high resolution global view of the work field and real time inlay of local image in this background. The result can be used for micromanipulation monitoring, assistance to the operator, alarms and others useful informations displaying

    Virtual camera synthesis for Micromanipulation and Microassembly.

    No full text
    International audienceThe vision system for micromanipulation and microassembly usually includes at least two cameras allowing top and lateral views of the work field. The top view is used to control the xy position of the microgripper. As for the lateral view, it allows the control of the z position. The paper describes how the lateral camera can be replaced by a virtual one using the trifocal transfer. Then, the work field is set free. The novel view synthesis method used requires only a weak calibration to recover the geometry of the scene, then, it is well suited for the vision at the microscale

    Synthesizing a virtual imager with a large field of view and a high resolution for micromanipulation.

    No full text
    International audiencePhoton microscope connected with a camera is the usual imager required in micromanipulation applications. That microimager gives high resolution views, but the corresponding field of view are very narrow and do not allow the vision of the entire workfield. The classical solution consists in using multiple views imaging system: a high resolution imager for local view and a low resolution imager for global view. We are developing an alternative solution based on image mosaicing that requires only one microimager. The views from that real microimager are associated in order to achieve a virtual microimager which combines a large field of view with a high resolution
    • …
    corecore